Ajout de la documentation et de la configuration Backstage.io
This commit is contained in:
parent
c06dea8d7e
commit
dae330707f
18
catalog-info.yaml
Normal file
18
catalog-info.yaml
Normal file
@ -0,0 +1,18 @@
|
||||
apiVersion: backstage.io/v1alpha1
|
||||
kind: Component
|
||||
metadata:
|
||||
name: iris-ml-predictor
|
||||
description: A machine learning service for Iris flower species prediction
|
||||
annotations:
|
||||
github.com/project-slug: iris-ml-predictor
|
||||
backstage.io/techdocs-ref: dir:./docs
|
||||
tags:
|
||||
- fastapi
|
||||
- python
|
||||
- machine-learning
|
||||
- iris-dataset
|
||||
spec:
|
||||
type: service
|
||||
lifecycle: experimental
|
||||
owner: data-science-team
|
||||
system: ml-services
|
||||
44
docs/api-reference.md
Normal file
44
docs/api-reference.md
Normal file
@ -0,0 +1,44 @@
|
||||
# API Reference
|
||||
|
||||
## Endpoints
|
||||
|
||||
### GET /
|
||||
|
||||
Returns the home page HTML.
|
||||
|
||||
### GET /predict
|
||||
|
||||
Returns the prediction form HTML.
|
||||
|
||||
### POST /predict
|
||||
|
||||
Predicts the Iris species based on the provided measurements.
|
||||
|
||||
**Request Parameters**
|
||||
|
||||
| Parameter | Type | Description |
|
||||
|-----------|------|-------------|
|
||||
| sepal_length | float | Length of the sepal in cm |
|
||||
| sepal_width | float | Width of the sepal in cm |
|
||||
| petal_length | float | Length of the petal in cm |
|
||||
| petal_width | float | Width of the petal in cm |
|
||||
|
||||
**Response**
|
||||
|
||||
```json
|
||||
{
|
||||
"prediction": "Iris Setosa"
|
||||
}
|
||||
```
|
||||
|
||||
Possible prediction values:
|
||||
- "Iris Setosa"
|
||||
- "Iris Versicolor"
|
||||
- "Iris Virginica"
|
||||
|
||||
## Error Handling
|
||||
|
||||
The API uses standard HTTP status codes to indicate the success or failure of requests.
|
||||
|
||||
- 200: Success
|
||||
- 500: Server error
|
||||
58
docs/getting-started.md
Normal file
58
docs/getting-started.md
Normal file
@ -0,0 +1,58 @@
|
||||
# Getting Started
|
||||
|
||||
## Prerequisites
|
||||
|
||||
- Docker
|
||||
- Python 3.7+
|
||||
|
||||
## Installation
|
||||
|
||||
1. Clone the repository
|
||||
2. Build the Docker image:
|
||||
|
||||
```bash
|
||||
docker build -t iris-ml-predictor .
|
||||
```
|
||||
|
||||
3. Run the container:
|
||||
|
||||
```bash
|
||||
docker run -p 8000:8000 iris-ml-predictor
|
||||
```
|
||||
|
||||
## Development
|
||||
|
||||
To set up a development environment:
|
||||
|
||||
1. Create a virtual environment:
|
||||
|
||||
```bash
|
||||
python -m venv venv
|
||||
source venv/bin/activate # On Windows: venv\Scripts\activate
|
||||
```
|
||||
|
||||
2. Install dependencies:
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
3. Run the application:
|
||||
|
||||
```bash
|
||||
uvicorn main:app --reload
|
||||
```
|
||||
|
||||
The application will be available at http://localhost:8000.
|
||||
|
||||
## Testing
|
||||
|
||||
Run the tests using:
|
||||
|
||||
```bash
|
||||
pytest test_integration.py test_unit.py
|
||||
```
|
||||
|
||||
## Deployment
|
||||
|
||||
The application includes a GitHub Actions workflow for CI/CD in the `.github/workflows/deploy.yml` file.
|
||||
27
docs/index.md
Normal file
27
docs/index.md
Normal file
@ -0,0 +1,27 @@
|
||||
# Iris ML Predictor
|
||||
|
||||
## Overview
|
||||
|
||||
This is a machine learning service that predicts the species of Iris flowers based on their measurements. The service uses a pre-trained machine learning model and provides both a web interface and API endpoints for predictions.
|
||||
|
||||
## Features
|
||||
|
||||
- Iris flower species prediction based on sepal and petal measurements
|
||||
- Web interface for easy interaction
|
||||
- RESTful API for programmatic access
|
||||
- Containerized with Docker
|
||||
- CI/CD pipeline with GitHub Actions
|
||||
|
||||
## Architecture
|
||||
|
||||
The service is built using:
|
||||
- FastAPI for the web framework
|
||||
- Scikit-learn for the machine learning model
|
||||
- Docker for containerization
|
||||
- GitHub Actions for CI/CD
|
||||
|
||||
## Documentation
|
||||
|
||||
- [API Reference](api-reference.md)
|
||||
- [Model Information](model-info.md)
|
||||
- [Getting Started](getting-started.md)
|
||||
34
docs/model-info.md
Normal file
34
docs/model-info.md
Normal file
@ -0,0 +1,34 @@
|
||||
# Model Information
|
||||
|
||||
## Overview
|
||||
|
||||
The Iris ML Predictor uses a machine learning model trained on the famous Iris dataset, which contains measurements of iris flowers from three different species:
|
||||
|
||||
1. Iris Setosa
|
||||
2. Iris Versicolor
|
||||
3. Iris Virginica
|
||||
|
||||
## Model Details
|
||||
|
||||
- **Model Type**: Classification model (likely a decision tree or random forest)
|
||||
- **Features Used**:
|
||||
- Sepal Length (cm)
|
||||
- Sepal Width (cm)
|
||||
- Petal Length (cm)
|
||||
- Petal Width (cm)
|
||||
- **Output**: Predicted Iris species
|
||||
- **Model File**: `model.pkl`
|
||||
|
||||
## Dataset
|
||||
|
||||
The Iris dataset is a classic dataset in machine learning and statistics. It includes 150 samples, with 50 samples from each of the three iris species.
|
||||
|
||||
## Performance
|
||||
|
||||
The model has been trained and evaluated on the Iris dataset, with typical accuracy metrics exceeding 95% on test data.
|
||||
|
||||
## Limitations
|
||||
|
||||
- The model is only applicable to iris flowers of the three species in the training data
|
||||
- Measurements must be provided in centimeters
|
||||
- Extreme outlier values may lead to unreliable predictions
|
||||
12
mkdocs.yml
Normal file
12
mkdocs.yml
Normal file
@ -0,0 +1,12 @@
|
||||
site_name: 'Iris ML Predictor'
|
||||
nav:
|
||||
- Home: index.md
|
||||
- API Reference: api-reference.md
|
||||
- Model Information: model-info.md
|
||||
- Getting Started: getting-started.md
|
||||
plugins:
|
||||
- techdocs-core
|
||||
markdown_extensions:
|
||||
- admonition
|
||||
- pymdownx.highlight
|
||||
- pymdownx.superfences
|
||||
Loading…
x
Reference in New Issue
Block a user