This commit is contained in:
User Name 2025-06-07 23:27:56 +02:00
commit c06dea8d7e
13 changed files with 910 additions and 0 deletions

6
.dockerignore Normal file
View File

@ -0,0 +1,6 @@
__pycache__
*.pyc
*.pyo
*.pyd
*.git
*myenv

38
.github/workflows/deploy.yml vendored Normal file
View File

@ -0,0 +1,38 @@
name: Deploy to Heroku
on:
push:
branches:
- main
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- name: Checkout Code
uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.9 # Match your app's Python version
- name: Install Dependencies
run: |
python -m pip install --upgrade pip
pip install -r requirements.txt
- name: Test Application
run: |
pytest # Assuming you have tests configured
- name: Deploy to Heroku
env:
HEROKU_API_KEY: ${{ secrets.HEROKU_API_KEY }}
HEROKU_APP_NAME: ${{ secrets.HEROKU_APP_NAME }}
run: |
echo "Deploying to Heroku..."
heroku container:login
heroku container:push web --app $HEROKU_APP_NAME
heroku container:release web --app $HEROKU_APP_NAME

24
Dockerfile Normal file
View File

@ -0,0 +1,24 @@
# Use the official Python image as a base
FROM python:3.9-slim
# Set environment variables to prevent Python from writing .pyc files and buffer outputs
ENV PYTHONDONTWRITEBYTECODE=1
ENV PYTHONUNBUFFERED=1
# Set the working directory inside the container
WORKDIR /app
# Copy the requirements file to the container
COPY requirements.txt /app/requirements.txt
# Install the Python dependencies
RUN pip install -r /app/requirements.txt
# Copy the application code to the container
COPY . /app
# Expose the port the app runs on
EXPOSE 8000
# Ensure the application runs on Heroku's dynamic port
CMD ["sh", "-c", "uvicorn main:app --host 0.0.0.0 --port $PORT"]

151
IRIS.csv Normal file
View File

@ -0,0 +1,151 @@
sepal_length,sepal_width,petal_length,petal_width,species
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.4,3.7,1.5,0.2,Iris-setosa
4.8,3.4,1.6,0.2,Iris-setosa
4.8,3,1.4,0.1,Iris-setosa
4.3,3,1.1,0.1,Iris-setosa
5.8,4,1.2,0.2,Iris-setosa
5.7,4.4,1.5,0.4,Iris-setosa
5.4,3.9,1.3,0.4,Iris-setosa
5.1,3.5,1.4,0.3,Iris-setosa
5.7,3.8,1.7,0.3,Iris-setosa
5.1,3.8,1.5,0.3,Iris-setosa
5.4,3.4,1.7,0.2,Iris-setosa
5.1,3.7,1.5,0.4,Iris-setosa
4.6,3.6,1,0.2,Iris-setosa
5.1,3.3,1.7,0.5,Iris-setosa
4.8,3.4,1.9,0.2,Iris-setosa
5,3,1.6,0.2,Iris-setosa
5,3.4,1.6,0.4,Iris-setosa
5.2,3.5,1.5,0.2,Iris-setosa
5.2,3.4,1.4,0.2,Iris-setosa
4.7,3.2,1.6,0.2,Iris-setosa
4.8,3.1,1.6,0.2,Iris-setosa
5.4,3.4,1.5,0.4,Iris-setosa
5.2,4.1,1.5,0.1,Iris-setosa
5.5,4.2,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5,3.2,1.2,0.2,Iris-setosa
5.5,3.5,1.3,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
4.4,3,1.3,0.2,Iris-setosa
5.1,3.4,1.5,0.2,Iris-setosa
5,3.5,1.3,0.3,Iris-setosa
4.5,2.3,1.3,0.3,Iris-setosa
4.4,3.2,1.3,0.2,Iris-setosa
5,3.5,1.6,0.6,Iris-setosa
5.1,3.8,1.9,0.4,Iris-setosa
4.8,3,1.4,0.3,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5,3.3,1.4,0.2,Iris-setosa
7,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4,1.3,Iris-versicolor
6.5,2.8,4.6,1.5,Iris-versicolor
5.7,2.8,4.5,1.3,Iris-versicolor
6.3,3.3,4.7,1.6,Iris-versicolor
4.9,2.4,3.3,1,Iris-versicolor
6.6,2.9,4.6,1.3,Iris-versicolor
5.2,2.7,3.9,1.4,Iris-versicolor
5,2,3.5,1,Iris-versicolor
5.9,3,4.2,1.5,Iris-versicolor
6,2.2,4,1,Iris-versicolor
6.1,2.9,4.7,1.4,Iris-versicolor
5.6,2.9,3.6,1.3,Iris-versicolor
6.7,3.1,4.4,1.4,Iris-versicolor
5.6,3,4.5,1.5,Iris-versicolor
5.8,2.7,4.1,1,Iris-versicolor
6.2,2.2,4.5,1.5,Iris-versicolor
5.6,2.5,3.9,1.1,Iris-versicolor
5.9,3.2,4.8,1.8,Iris-versicolor
6.1,2.8,4,1.3,Iris-versicolor
6.3,2.5,4.9,1.5,Iris-versicolor
6.1,2.8,4.7,1.2,Iris-versicolor
6.4,2.9,4.3,1.3,Iris-versicolor
6.6,3,4.4,1.4,Iris-versicolor
6.8,2.8,4.8,1.4,Iris-versicolor
6.7,3,5,1.7,Iris-versicolor
6,2.9,4.5,1.5,Iris-versicolor
5.7,2.6,3.5,1,Iris-versicolor
5.5,2.4,3.8,1.1,Iris-versicolor
5.5,2.4,3.7,1,Iris-versicolor
5.8,2.7,3.9,1.2,Iris-versicolor
6,2.7,5.1,1.6,Iris-versicolor
5.4,3,4.5,1.5,Iris-versicolor
6,3.4,4.5,1.6,Iris-versicolor
6.7,3.1,4.7,1.5,Iris-versicolor
6.3,2.3,4.4,1.3,Iris-versicolor
5.6,3,4.1,1.3,Iris-versicolor
5.5,2.5,4,1.3,Iris-versicolor
5.5,2.6,4.4,1.2,Iris-versicolor
6.1,3,4.6,1.4,Iris-versicolor
5.8,2.6,4,1.2,Iris-versicolor
5,2.3,3.3,1,Iris-versicolor
5.6,2.7,4.2,1.3,Iris-versicolor
5.7,3,4.2,1.2,Iris-versicolor
5.7,2.9,4.2,1.3,Iris-versicolor
6.2,2.9,4.3,1.3,Iris-versicolor
5.1,2.5,3,1.1,Iris-versicolor
5.7,2.8,4.1,1.3,Iris-versicolor
6.3,3.3,6,2.5,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3,5.9,2.1,Iris-virginica
6.3,2.9,5.6,1.8,Iris-virginica
6.5,3,5.8,2.2,Iris-virginica
7.6,3,6.6,2.1,Iris-virginica
4.9,2.5,4.5,1.7,Iris-virginica
7.3,2.9,6.3,1.8,Iris-virginica
6.7,2.5,5.8,1.8,Iris-virginica
7.2,3.6,6.1,2.5,Iris-virginica
6.5,3.2,5.1,2,Iris-virginica
6.4,2.7,5.3,1.9,Iris-virginica
6.8,3,5.5,2.1,Iris-virginica
5.7,2.5,5,2,Iris-virginica
5.8,2.8,5.1,2.4,Iris-virginica
6.4,3.2,5.3,2.3,Iris-virginica
6.5,3,5.5,1.8,Iris-virginica
7.7,3.8,6.7,2.2,Iris-virginica
7.7,2.6,6.9,2.3,Iris-virginica
6,2.2,5,1.5,Iris-virginica
6.9,3.2,5.7,2.3,Iris-virginica
5.6,2.8,4.9,2,Iris-virginica
7.7,2.8,6.7,2,Iris-virginica
6.3,2.7,4.9,1.8,Iris-virginica
6.7,3.3,5.7,2.1,Iris-virginica
7.2,3.2,6,1.8,Iris-virginica
6.2,2.8,4.8,1.8,Iris-virginica
6.1,3,4.9,1.8,Iris-virginica
6.4,2.8,5.6,2.1,Iris-virginica
7.2,3,5.8,1.6,Iris-virginica
7.4,2.8,6.1,1.9,Iris-virginica
7.9,3.8,6.4,2,Iris-virginica
6.4,2.8,5.6,2.2,Iris-virginica
6.3,2.8,5.1,1.5,Iris-virginica
6.1,2.6,5.6,1.4,Iris-virginica
7.7,3,6.1,2.3,Iris-virginica
6.3,3.4,5.6,2.4,Iris-virginica
6.4,3.1,5.5,1.8,Iris-virginica
6,3,4.8,1.8,Iris-virginica
6.9,3.1,5.4,2.1,Iris-virginica
6.7,3.1,5.6,2.4,Iris-virginica
6.9,3.1,5.1,2.3,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
6.8,3.2,5.9,2.3,Iris-virginica
6.7,3.3,5.7,2.5,Iris-virginica
6.7,3,5.2,2.3,Iris-virginica
6.3,2.5,5,1.9,Iris-virginica
6.5,3,5.2,2,Iris-virginica
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3,5.1,1.8,Iris-virginica
1 sepal_length sepal_width petal_length petal_width species
2 5.1 3.5 1.4 0.2 Iris-setosa
3 4.9 3 1.4 0.2 Iris-setosa
4 4.7 3.2 1.3 0.2 Iris-setosa
5 4.6 3.1 1.5 0.2 Iris-setosa
6 5 3.6 1.4 0.2 Iris-setosa
7 5.4 3.9 1.7 0.4 Iris-setosa
8 4.6 3.4 1.4 0.3 Iris-setosa
9 5 3.4 1.5 0.2 Iris-setosa
10 4.4 2.9 1.4 0.2 Iris-setosa
11 4.9 3.1 1.5 0.1 Iris-setosa
12 5.4 3.7 1.5 0.2 Iris-setosa
13 4.8 3.4 1.6 0.2 Iris-setosa
14 4.8 3 1.4 0.1 Iris-setosa
15 4.3 3 1.1 0.1 Iris-setosa
16 5.8 4 1.2 0.2 Iris-setosa
17 5.7 4.4 1.5 0.4 Iris-setosa
18 5.4 3.9 1.3 0.4 Iris-setosa
19 5.1 3.5 1.4 0.3 Iris-setosa
20 5.7 3.8 1.7 0.3 Iris-setosa
21 5.1 3.8 1.5 0.3 Iris-setosa
22 5.4 3.4 1.7 0.2 Iris-setosa
23 5.1 3.7 1.5 0.4 Iris-setosa
24 4.6 3.6 1 0.2 Iris-setosa
25 5.1 3.3 1.7 0.5 Iris-setosa
26 4.8 3.4 1.9 0.2 Iris-setosa
27 5 3 1.6 0.2 Iris-setosa
28 5 3.4 1.6 0.4 Iris-setosa
29 5.2 3.5 1.5 0.2 Iris-setosa
30 5.2 3.4 1.4 0.2 Iris-setosa
31 4.7 3.2 1.6 0.2 Iris-setosa
32 4.8 3.1 1.6 0.2 Iris-setosa
33 5.4 3.4 1.5 0.4 Iris-setosa
34 5.2 4.1 1.5 0.1 Iris-setosa
35 5.5 4.2 1.4 0.2 Iris-setosa
36 4.9 3.1 1.5 0.1 Iris-setosa
37 5 3.2 1.2 0.2 Iris-setosa
38 5.5 3.5 1.3 0.2 Iris-setosa
39 4.9 3.1 1.5 0.1 Iris-setosa
40 4.4 3 1.3 0.2 Iris-setosa
41 5.1 3.4 1.5 0.2 Iris-setosa
42 5 3.5 1.3 0.3 Iris-setosa
43 4.5 2.3 1.3 0.3 Iris-setosa
44 4.4 3.2 1.3 0.2 Iris-setosa
45 5 3.5 1.6 0.6 Iris-setosa
46 5.1 3.8 1.9 0.4 Iris-setosa
47 4.8 3 1.4 0.3 Iris-setosa
48 5.1 3.8 1.6 0.2 Iris-setosa
49 4.6 3.2 1.4 0.2 Iris-setosa
50 5.3 3.7 1.5 0.2 Iris-setosa
51 5 3.3 1.4 0.2 Iris-setosa
52 7 3.2 4.7 1.4 Iris-versicolor
53 6.4 3.2 4.5 1.5 Iris-versicolor
54 6.9 3.1 4.9 1.5 Iris-versicolor
55 5.5 2.3 4 1.3 Iris-versicolor
56 6.5 2.8 4.6 1.5 Iris-versicolor
57 5.7 2.8 4.5 1.3 Iris-versicolor
58 6.3 3.3 4.7 1.6 Iris-versicolor
59 4.9 2.4 3.3 1 Iris-versicolor
60 6.6 2.9 4.6 1.3 Iris-versicolor
61 5.2 2.7 3.9 1.4 Iris-versicolor
62 5 2 3.5 1 Iris-versicolor
63 5.9 3 4.2 1.5 Iris-versicolor
64 6 2.2 4 1 Iris-versicolor
65 6.1 2.9 4.7 1.4 Iris-versicolor
66 5.6 2.9 3.6 1.3 Iris-versicolor
67 6.7 3.1 4.4 1.4 Iris-versicolor
68 5.6 3 4.5 1.5 Iris-versicolor
69 5.8 2.7 4.1 1 Iris-versicolor
70 6.2 2.2 4.5 1.5 Iris-versicolor
71 5.6 2.5 3.9 1.1 Iris-versicolor
72 5.9 3.2 4.8 1.8 Iris-versicolor
73 6.1 2.8 4 1.3 Iris-versicolor
74 6.3 2.5 4.9 1.5 Iris-versicolor
75 6.1 2.8 4.7 1.2 Iris-versicolor
76 6.4 2.9 4.3 1.3 Iris-versicolor
77 6.6 3 4.4 1.4 Iris-versicolor
78 6.8 2.8 4.8 1.4 Iris-versicolor
79 6.7 3 5 1.7 Iris-versicolor
80 6 2.9 4.5 1.5 Iris-versicolor
81 5.7 2.6 3.5 1 Iris-versicolor
82 5.5 2.4 3.8 1.1 Iris-versicolor
83 5.5 2.4 3.7 1 Iris-versicolor
84 5.8 2.7 3.9 1.2 Iris-versicolor
85 6 2.7 5.1 1.6 Iris-versicolor
86 5.4 3 4.5 1.5 Iris-versicolor
87 6 3.4 4.5 1.6 Iris-versicolor
88 6.7 3.1 4.7 1.5 Iris-versicolor
89 6.3 2.3 4.4 1.3 Iris-versicolor
90 5.6 3 4.1 1.3 Iris-versicolor
91 5.5 2.5 4 1.3 Iris-versicolor
92 5.5 2.6 4.4 1.2 Iris-versicolor
93 6.1 3 4.6 1.4 Iris-versicolor
94 5.8 2.6 4 1.2 Iris-versicolor
95 5 2.3 3.3 1 Iris-versicolor
96 5.6 2.7 4.2 1.3 Iris-versicolor
97 5.7 3 4.2 1.2 Iris-versicolor
98 5.7 2.9 4.2 1.3 Iris-versicolor
99 6.2 2.9 4.3 1.3 Iris-versicolor
100 5.1 2.5 3 1.1 Iris-versicolor
101 5.7 2.8 4.1 1.3 Iris-versicolor
102 6.3 3.3 6 2.5 Iris-virginica
103 5.8 2.7 5.1 1.9 Iris-virginica
104 7.1 3 5.9 2.1 Iris-virginica
105 6.3 2.9 5.6 1.8 Iris-virginica
106 6.5 3 5.8 2.2 Iris-virginica
107 7.6 3 6.6 2.1 Iris-virginica
108 4.9 2.5 4.5 1.7 Iris-virginica
109 7.3 2.9 6.3 1.8 Iris-virginica
110 6.7 2.5 5.8 1.8 Iris-virginica
111 7.2 3.6 6.1 2.5 Iris-virginica
112 6.5 3.2 5.1 2 Iris-virginica
113 6.4 2.7 5.3 1.9 Iris-virginica
114 6.8 3 5.5 2.1 Iris-virginica
115 5.7 2.5 5 2 Iris-virginica
116 5.8 2.8 5.1 2.4 Iris-virginica
117 6.4 3.2 5.3 2.3 Iris-virginica
118 6.5 3 5.5 1.8 Iris-virginica
119 7.7 3.8 6.7 2.2 Iris-virginica
120 7.7 2.6 6.9 2.3 Iris-virginica
121 6 2.2 5 1.5 Iris-virginica
122 6.9 3.2 5.7 2.3 Iris-virginica
123 5.6 2.8 4.9 2 Iris-virginica
124 7.7 2.8 6.7 2 Iris-virginica
125 6.3 2.7 4.9 1.8 Iris-virginica
126 6.7 3.3 5.7 2.1 Iris-virginica
127 7.2 3.2 6 1.8 Iris-virginica
128 6.2 2.8 4.8 1.8 Iris-virginica
129 6.1 3 4.9 1.8 Iris-virginica
130 6.4 2.8 5.6 2.1 Iris-virginica
131 7.2 3 5.8 1.6 Iris-virginica
132 7.4 2.8 6.1 1.9 Iris-virginica
133 7.9 3.8 6.4 2 Iris-virginica
134 6.4 2.8 5.6 2.2 Iris-virginica
135 6.3 2.8 5.1 1.5 Iris-virginica
136 6.1 2.6 5.6 1.4 Iris-virginica
137 7.7 3 6.1 2.3 Iris-virginica
138 6.3 3.4 5.6 2.4 Iris-virginica
139 6.4 3.1 5.5 1.8 Iris-virginica
140 6 3 4.8 1.8 Iris-virginica
141 6.9 3.1 5.4 2.1 Iris-virginica
142 6.7 3.1 5.6 2.4 Iris-virginica
143 6.9 3.1 5.1 2.3 Iris-virginica
144 5.8 2.7 5.1 1.9 Iris-virginica
145 6.8 3.2 5.9 2.3 Iris-virginica
146 6.7 3.3 5.7 2.5 Iris-virginica
147 6.7 3 5.2 2.3 Iris-virginica
148 6.3 2.5 5 1.9 Iris-virginica
149 6.5 3 5.2 2 Iris-virginica
150 6.2 3.4 5.4 2.3 Iris-virginica
151 5.9 3 5.1 1.8 Iris-virginica

414
Untitled.ipynb Normal file

File diff suppressed because one or more lines are too long

85
main.py Normal file
View File

@ -0,0 +1,85 @@
from fastapi import FastAPI, Form, Request
from fastapi.responses import HTMLResponse, JSONResponse
from fastapi.staticfiles import StaticFiles
import logging
import joblib
import numpy as np
import pandas as pd
import os
import uvicorn
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger("FastAPI Iris Predictor")
try:
model = joblib.load("model.pkl")
logger.info("Model loaded successfully.")
except Exception as e:
logger.error("Failed to load the model: %s", e)
raise RuntimeError("Model loading failed.") from e
app = FastAPI()
# Mount static folder for serving static files like CSS, HTML
app.mount("/static", StaticFiles(directory="static"), name="static")
species_mapping = {0: "Iris Setosa", 1: "Iris Versicolor", 2: "Iris Virginica"}
@app.get("/", response_class=HTMLResponse)
async def home():
try:
# Serve the home page
with open("static/index.html", "r") as file:
logger.info("Home page served.")
return file.read()
except Exception as e:
logger.error("Error serving home page: %s", e)
return HTMLResponse(content="Error loading the home page.", status_code=500)
@app.get("/predict", response_class=HTMLResponse)
async def predict():
# Serve the prediction page
try:
with open("static/predict.html", "r") as file:
logger.info("Prediction page served.")
return file.read()
except Exception as e:
logger.error("Error serving prediction page: %s", e)
return HTMLResponse(content="Error loading the prediction page.", status_code=500)
@app.post("/predict")
async def predict_species(
sepal_length: float = Form(...),
sepal_width: float = Form(...),
petal_length: float = Form(...),
petal_width: float = Form(...)
):
feature_names = ["sepal_length", "sepal_width", "petal_length", "petal_width"]
try:
input_df = pd.DataFrame([[sepal_length, sepal_width, petal_length, petal_width]], columns=feature_names)
logger.info("Input data received: %s", input_df)
# Predict using the model
prediction = model.predict(input_df)[0]
# Get the species name
species = species_mapping.get(prediction, "Unknown")
logger.info("Prediction made: %s", species)
return { "prediction": species}
except Exception as e:
logger.error("Error making prediction: %s", e)
return JSONResponse(content={"error": "Failed to make a prediction"}, status_code=500)
if __name__ == "__main__":
port = int(os.getenv("PORT", 8000)) # Use Heroku's PORT
uvicorn.run(app, host="0.0.0.0", port=port)

BIN
model.pkl Normal file

Binary file not shown.

10
requirements.txt Normal file
View File

@ -0,0 +1,10 @@
fastapi
joblib
numpy
pandas
pydantic
pytest
httpx
uvicorn
scikit-learn
python-multipart

18
static/index.html Normal file
View File

@ -0,0 +1,18 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Iris Prediction Home</title>
<link rel="stylesheet" href="/static/styles.css">
</head>
<body>
<div class="container">
<h1>Welcome to Iris Species Predictor</h1>
<p>This application predicts the species of an Iris flower based on its features.</p>
<a href="/predict" class="button">Go to Prediction</a>
<p>&copy; Meta Brains. All rights reserved.</p>
</div>
</body>
</html>

57
static/predict.html Normal file
View File

@ -0,0 +1,57 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Iris Prediction</title>
<link rel="stylesheet" href="/static/styles.css">
<script>
// JavaScript function to handle the form submission
async function submitForm(event) {
event.preventDefault(); // Prevent the default form submission
// Get the form data
const formData = new FormData(event.target);
// Prepare the data to send to the FastAPI endpoint
const data = new URLSearchParams();
for (const [key, value] of formData.entries()) {
data.append(key, value);
}
// Send the data to FastAPI via POST request
const response = await fetch("/predict", {
method: "POST",
body: data
});
// Get the JSON response and update the result on the page
const result = await response.json();
document.getElementById("prediction").innerText = "Predicted Species: " + result.prediction;
}
</script>
</head>
<body>
<div class="container">
<h1>Predict Iris Species</h1>
<form onsubmit="submitForm(event)">
<label for="sepal_length">Sepal Length (cm):</label>
<input type="number" step="0.1" name="sepal_length" id="sepal_length" required>
<label for="sepal_width">Sepal Width (cm):</label>
<input type="number" step="0.1" name="sepal_width" id="sepal_width" required>
<label for="petal_length">Petal Length (cm):</label>
<input type="number" step="0.1" name="petal_length" id="petal_length" required>
<label for="petal_width">Petal Width (cm):</label>
<input type="number" step="0.1" name="petal_width" id="petal_width" required>
<button type="submit" class="button">Predict</button>
</form>
<!-- Display prediction result here -->
<div id="prediction"></div>
</div>
</body>
</html>

65
static/styles.css Normal file
View File

@ -0,0 +1,65 @@
body {
font-family: Arial, sans-serif;
background: linear-gradient(135deg, #87CEEB, #FFDEE9);
margin: 0;
padding: 0;
}
.container {
text-align: center;
margin: 50px auto;
max-width: 600px;
background: white;
padding: 20px;
border-radius: 10px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
}
h1 {
color: #333;
}
p {
color: #555;
}
form {
display: flex;
flex-direction: column;
align-items: center;
}
form label {
margin-top: 10px;
font-weight: bold;
}
form input {
margin: 10px 0;
padding: 10px;
width: 80%;
border: 1px solid #ccc;
border-radius: 5px;
}
.button {
display: inline-block;
background: #4CAF50;
color: white;
padding: 10px 20px;
margin: 20px 0;
text-decoration: none;
border-radius: 5px;
transition: background 0.3s;
}
.button:hover {
background: #45a049;
}
.result {
margin-top: 20px;
font-size: 1.2em;
color: #333;
font-weight: bold;
}

27
test_integration.py Normal file
View File

@ -0,0 +1,27 @@
import pytest
from fastapi.testclient import TestClient
from main import app
client = TestClient(app)
def test_home_endpoint():
"""Test if the home page loads successfully."""
response = client.get("/")
assert response.status_code == 200, "Failed to load the home page."
def test_predict_page_endpoint():
"""Test if the prediction page loads successfully."""
response = client.get("/predict")
assert response.status_code == 200, "Failed to load the prediction page."
def test_predict_species_endpoint():
"""Test if the predict endpoint works."""
payload = {
"sepal_length": 5.1,
"sepal_width": 3.5,
"petal_length": 1.4,
"petal_width": 0.2
}
response = client.post("/predict", data=payload)
assert response.status_code == 200, "Failed to predict species."
assert "prediction" in response.json(), "Response missing prediction field."

15
test_unit.py Normal file
View File

@ -0,0 +1,15 @@
import pytest
import pandas as pd
from main import model, species_mapping
def test_model_prediction():
# Arrange: Create a test input DataFrame
input_df = pd.DataFrame([[5.1, 3.5, 1.4, 0.2]], columns=["sepal_length", "sepal_width", "petal_length", "petal_width"])
# Act: Perform prediction
prediction = model.predict(input_df)[0]
species = species_mapping.get(prediction, "Unknown")
# Assert: Check prediction result
assert species == "Iris Setosa", "The prediction did not return the expected result."