# Getting Started ## Prerequisites - Docker - Python 3.7+ ## Installation 1. Clone the repository 2. Build the Docker image: ```bash docker build -t iris-ml-predictor . ``` 3. Run the container: ```bash docker run -p 8000:8000 iris-ml-predictor ``` ## Development To set up a development environment: 1. Create a virtual environment: ```bash python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate ``` 2. Install dependencies: ```bash pip install -r requirements.txt ``` 3. Run the application: ```bash uvicorn main:app --reload ``` The application will be available at http://localhost:8000. ## Testing Run the tests using: ```bash pytest test_integration.py test_unit.py ``` ## Deployment The application includes a GitHub Actions workflow for CI/CD in the `.github/workflows/deploy.yml` file.